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Abstract
We theoretically consider a three-level laser with an incoherent one-way
pump from a ground state into an intermediate excited state and a coherent
drive into the upper laser state. The possibilities of inversionless lasing are
studied. It is demonstrated that, in the case of a strong coupling with the
drive laser (when its generation depends essentially on the three-level
medium), the quantum properties of laser radiation can be improved by
using m-quantum coherent excitation or by applying a sub-Poissonian
coherent pump.

Keywords: inversionless lasing, sub-Poissonian light, photodetector,
coherent state

1. Introduction

Three-level lasing is of interest because, first, it contains some
intrinsic mechanism that ensures sub-Poissonian lasing [1]
automatically without some additional efforts to distinguish
it from two-level lasers [2], for example, where we need to
foresee a regular pump. Second, the system is the simplest
available that is able to ensure so called inversionless gain [3].
We are going to discuss both these aspects together.

A laser using a �-configuration of levels and statistical
properties of its radiation were considered in [1], and it was
demonstrated that there is reduction of the shot noise, but the
efficiency was not very high. The strongest effect shown is
the reduction by halves. It is then natural to search for a
simple physical system which is able to overcome this result,
and one of the extremely attractive candidates is the three-
level laser due to its ability to produce sub-Poissonian lasing
automatically.

In this paper, two possible systems will be discussed.
First we will propose the coherent pump which is realized
by sub-Poissonian light. Obviously we can expect here some
additional reduction of the laser emission noise, because, in
the system as whole, in principle, the number of noise sources
decreases. The same can be expected in the case when we apply

the m-photon pump, because, in this case, even the Poissonian
light is perceived to be sub-Poissonian.

2. Semi-classical approach

2. 1. A t hre e - l ev e l l as e r m ode l

The active medium of the laser consists of three-level atoms,
which are schematically shown in figure 1(a). The laser
levels are the uppermost (a) and the ground (b), and the
coherent pump is in resonance with the adjacent transition
(c−a) (�-configuration). To ensure lasing we must predict
some incoherent one-way pump (b → c) with a rate γb. And
our last additional requirement is for the laser transition (a− b)

spontaneous emission occurring with a rate γa .
It needs to be stressed that in this configuration there

is a conversion of the small frequency of the pump into the
higher one of lasing. At the same time our formulae obtained
for this model will be perfectly suitable for the configuration
represented in figure 1(b) and thereby describe a situation with
a reduction of frequency.

To implement a one-way pump (b → c) in a real situation
we must take into account some additional level (d) (see
figure 2) and some additional pump incoherent mechanisms
ensuring processes (b → d), (d → b) and (d → c). Further,
in our formal equations just the model is considered.
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(a)

(b)

Figure 1. Atomic configurations for the three-level laser.

Figure 2. The three-level configuration of atoms with an additional
level (d) to implement a one-way incoherent pump.

Figure 3. Experimental setup for studying the quantum properties
of the emission of the three-level laser.

Under our theoretical description the following conceptual
experiment is carried out (figure 3). There are two lasers:
exciting D and excited L. The first can be Poissonian or sub-
Poissonian depending on our needs. The second is our three-
level laser. The excitation of the medium of the second laser is
carried out by the intracavity field of the first one (the scheme
with common intracavity space).

Let us write a ground equation for the semi-classical
theory in the form:

˙̂σ = −ı [HI, σ̂ ] + R̂atσ̂ . (1)

Here σ̂ is the four-level atom density matrix (figure 2),
the operator R̂at ensures all the incoherent processes, the
interaction Hamiltonian HI in the interaction picture is

HI = −�l|a〉〈b| − �d|a〉〈c| + h.c. (2)

Here �l and �d are the complex Rabi frequencies for the laser
and pump channels, respectively:

�l = −ıglαl, �d = −ıgdα
m
d , m = 1, 2, 3, . . .

(3)

where αl is the c-number complex amplitudes of the laser fields
and αd that of the pump (or drive) field; gl,d are respective
coupling constants. As is seen, the opportunity for m-quantum
interaction on the transition (a−c) is taken into account within
the framework of the model Hamiltonian (2). For simplicity
we choose all the frequency detunings in the system to be equal
to zero.

Rewriting the equation in the terms of the atomic matrix
elements, we have the following:

σ̇bb = −γbσbb + γaσaa + γdbσdd − ı�lσba + ı�∗
l σab (4)

σ̇cc = γdcσdd − ı�dσca + ı�∗
dσac (5)

σ̇dd = γbσbb − γdσdd , γd = γdc + γdb (6)

σaa + σbb + σcc + σdd = 1 (7)

and
σ̇ca = − 1

2 γaσca + ı�∗
d(σaa − σcc) − ı�∗

l σcb (8)

σ̇cb = − 1
2γbσcb + ı�∗

dσab − ı�lσca (9)

σ̇ba = − 1
2 (γa + γb)σba + ı�∗

l (σaa − σbb) − ı�∗
dσbc. (10)

Within the framework of the semi-classical theory only
stationary solutions are of interest to us and that is why we can
set all the derivatives over t to be equal to zero. As a result
the system of differential equations is converted into a system
of algebraic ones. Then, with help of equations (8)–(10) we
can express all the non-zero polarizations via the population
differences nik = σi i − σkk in the following form:

σab = − ı�l

γab

(1 + I − (1 + y)Id)nab + (1 + y)Idncb

1 + I + Id
(11)

σac = − ı�d

γab

−Inab + (1 + y)(1 + Id)nac

1 + I + Id
(12)

σcb = 2�l�
∗
d

γbγab

nab + (1 + y)nac

1 + I + Id
. (13)

Here
γab = 1

2 (γa + γb), y = γb

γa
, (14)

and I and Id are dimensionless intensities of the laser and drive
fields which are expressed via the respective Rabi frequencies
in the form:

I = 4|�l|2
γaγb

, Id = 2|�d|2
γbγab

. (15)

Using equations (4)–(7) and substituting there (11)–(13), we
can get a system of equations for populations:

σaa(1 + x)

(
1 + Id + I

y

1 + y

)

− σbb y

(
1 + Id + I

x

1 + y

)
= 0 (16)

σaa

(
1

y
+ 2

)
Id + σbb

×
[

1 + I

(1 + y)(1 + x)
+

(
1 + z − 1

1 + x

)
Id

]
= Id (17)
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where
x = γdb

γdc
, z = γb

γdb + γdc
. (18)

2.2. Coherence of the laser transition at the threshold of
generation

Now we have all the possibilities to write the required formulae
for the stationary populations and polarizations in the general
case. However, they are too cumbersome to discuss here;
two limits are more important for us. First, to specify the
mechanisms of gain, we need to know what happens at a
threshold of generation (at I � 1). Second, the quantum
properties of the laser emission are usually the most expressive
under a laser saturation condition, i.e. it is the area I � 1 which
is of interest to us. These two cases will be discussed in this
section.

Keeping in (11) the common coefficient �l and putting
I = 0 in all the other places of the formula, the polarization
of the laser transition on the threshold of generation can be
written in the form:

σab = −glαl

γab

(1 − Id − y Id)nab + (1 + y)Idncb

1 + Id
. (19)

One can see that a gain in the laser transition depends on two
factors: on the traditional laser inversion nab , and on the Raman
inversion ncb. The inversions can be written in the explicit
form on the basis of stationary solutions for populations on the
threshold of generation (I � 1):

σaa = y(1 + y)Id

1 + Id[(1 + y)2 + (1 + x)(1 + y)(1 + z)]
(20)

σbb = (1 + x)(1 + y)Id

1 + Id[(1 + y)2 + (1 + x)(1 + y)(1 + z)]
(21)

σcc = 1 + (1 + y)Id

1 + Id[(1 + y)2 + (1 + x)(1 + y)(1 + z)]
(22)

σdd = z(1 + x)(1 + y)Id

1 + Id[(1 + y)2 + (1 + x)(1 + y)(1 + z)]
. (23)

From here the actual inversions read:

nab = (y − 1 − x)(1 + y)Id

1 + Id[(1 + y)2 + (1 + x)(1 + y)(1 + z)]
(24)

ncb = 1 − x(1 + y)Id

1 + Id[(1 + y)2 + (1 + x)(1 + y)(1 + z)]
. (25)

To conclude relative to gain we can write the laser equation
for slow laser amplitude αl, which is given formally by the
following:

α̇l = −κl

2
αl − Nglσab. (26)

Here N is the number of three-level atoms which participate
in lasing. For a gain we require Re(σab/αl) < 0. It is possible
to achieve it in different ways.

For example, putting x(1 + y)Id = 1, we have the
possibility of eliminating the processes connected with the
Raman inversion, because according to (25) then ncb = 0.
Then in the case of the three-level medium a gain can take place
for both the situations with positive and negative inversion on
laser transition. It is not difficult to understand that traditional

laser amplification with the positive inversion nab > 0 is
achieved under conditions

x(1 + y)Id = 1, y > 1 + x, x > 1. (27)

At the same time the inversionless amplification with nab < 0
takes place when

x(1 + y)Id = 1, y < 1 + x, x < 1. (28)

2.3. Coherency of the laser transition in the saturation regime

For our statistical study it is useful to know solutions in the
regime of the laser saturation that is under I � 1, Id. Keeping
the highest terms we can get the following formulae:

σaa = x(1 + y)
Id

I
� 1,

σbb = (1 + x)(1 + y)
Id

I
� 1, σcc ≈ 1

(29)

σab = −2glαl

γa

Id

I 2
,

σac = −2gdα
m
d

γa

1

I
, σcb = −4glgdαlα

∗m
d

γaγb

1

I
.

(30)

Equation (26) provides us with the condition of the stationary
generation:

nl = (
√

nd)
m+1 κ̃d

κl

1

1 + y
. (31)

Here the magnitude

κ̃d = −2Ngd Re

(
σac

αd

)
= γb(

√
nd)

m−1 Ng2
d

nlg2
l

(32)

has a physical sense of speed of the m-photon absorption of
driving light in the three-level medium in the transition (a−c).

3. Quantum approach

3.1. The kinetic equation for the density matrix of the laser
field

In contrast to the consideration in the previous section we now
assume both the laser and the drive fields are quantized and will
try to construct a kinetic equation for the field density matrix.
The physical system, consisting of two lasers and represented
schematically in figure 3, can be discussed theoretically as a
two-mode laser with a two-component active medium and a
complicated cavity. Let the matrix ρ describe a behaviour of
both the modes. Putting the high-Q cavity relative to both
modes we can write formally the following kinetic equation:

ρ̇ = (Ŝd − R̂d)ρ + (Ŝl − R̂l)ρ. (33)

Here operators R̂d and R̂l ensure damping of the quantum field
oscillators with rates κd and κl, respectively, and as is known
in the Glauber diagonal representation, they read:

R̂i = κi
∂

∂ui
ui , i = d, l. (34)
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In contrast to the semi-classical approach, here αi =√
ui exp(ıϕi ) are not simply c-numbers but the eigen-numbers

of the respective operators of annihilation of photons:

ai |αi〉 = αi |αi〉, [ai , a†
i ] = 1. (35)

The explicit form of the operator Ŝd depends on the concrete
model of the driving laser. If we, for example, wish to use
for excitation of the three-level laser a two-level Poissonian
laser, then the explicit form of the operator Ŝd can be found in
work [4]. At the same time for the sub-Poissonian pump we
can find the respective expression in work [2].

We must calculate now the operator Ŝl which describes
the behaviour of the field oscillators under interaction with the
three-level medium. The scheme of constructing the similar
operator can be found, for example, in work [5], where all the
required details are given and here we repeat only basic points
for construction.

Let the density matrix F̂ describe the behaviour of two
coherent quantum fields and a single three-level atom. Then
we can write some obvious equation in the form:

˙̂F = −ı [V̂ , F̂] + R̂at F̂ . (36)

Here the interaction Hamiltonian

V̂ = ıgdam
d |a〉〈c| + ıglal|a〉〈b| + h.c., m = 1, 2, 3, . . .

(37)
looks like that of the semi-classical theory (2), but it is
determined by the photon operators al, a†

l and ad, a†
d instead

of the respective complex amplitudes.
The operator R̂at ensures the incoherent processes (a) →

(b) and (b) → (c) (in this section we use the model of the
atom represented in the figure 1 without the additional level
(d)).

In the Glauber diagonal representation, equation (36) is
rewritten in the following form. In the Hamiltonian (37) the
photon operators ai and a†

i are exchanged into their eigen-
numbers αi and α∗

i and to the right of the equation the additional
terms arise. These terms are proportional to derivatives over
the complex amplitudes αd and αl and they provide us with the
possibility of constructing the iteration connected with their
small magnitudes.

Next we factorize the density matrix F̂ in the form:

F̂ = ρσ̂ + π̂ (38)

where the matrix σ̂ is the atomic one describing the behaviour
of our three-level atom in two ‘classical’ fields (in the �-
configuration) with amplitudes αd and αl and this matrix obeys
equation (2). The matrix

ρ = Tratom F̂ (39)

is the field matrix for which we are trying to construct the
kinetic equation, and π̂ is the correlation matrix with property
Tr π̂ = 0. The factorization allows us to write the system of
three equations for the matrices σ̂ , π̂ and ρ instead of the single
initial equation (36).

As is known, we have the possibility of constructing the
kinetic equation for the field sub-system provided the atomic
sub-system is developed much faster. This means that in the

equations for ρ and π̂ , which are dependent on the matrix
σ̂ , we may choose for the matrix σ̂ the stationary solution.
Simultaneously understanding that the matrix π̂ that follows
adiabatically to the ρ, we can substitute the stationary solution
for π̂ into the equation for ρ too. But even the stationary
solution for π̂ can be found only as a power series in derivatives
over the complex amplitudes αd and αl. This means that in the
general case the field kinetic equation contains in principle
all the degrees of the derivatives. Nevertheless the obtained
expressions give the possibility of calculating a development
of the laser field state at the expense of a single atom. To take
into account a lot of atoms we need simply to multiply the
right-hand side of equation by the number of actual atoms N .

3.2. Approximation of small photon fluctuations

To make a mathematical situation simpler we can apply the
approximation of small photon fluctuations in each mode. This
means that we put

ui = ni + εi , ni � εi (40)

where ni are stationary number of photons in i -mode inside
the cavity.

Then selecting the photon matrix

R(εd, εl, t) =
∫

dϕd dϕl ρ(εd, εl, ϕl, ϕdt) (41)

the equation for this matrix reads:

∂

∂t
R(εd, εl, t) = �d

∂

∂εd
(εd − δdlεl)R + �dndξd

∂2 R

∂ε2
d

+ �l
∂

∂εl
(εl − δldεd)R − 1

2
�lnl

∂2 R

∂ε2
l

+ D
∂2 R

∂εd ∂εl
+ {· · ·}.

(42)

The coefficients are expressed via physical parameters in the
form:

�d = �0 + mκ̄d (43)

δdl�d = mκl (44)

�l = 2κl (45)

δld�l = κ̄d (46)

ξd = ξ0(�0 + κ̄d) − (m − 1)κ̄d/2

�0 + mκ̄d
(47)

D = mκlnl. (48)

Here the parameters �0 and ξ0 connect with the drive laser:
�0 is the rate of damping the photon fluctuations there and ξ0

is the respective statistical Mandel parameter. If we choose a
sub-Poissonian laser investigated in [2] these coefficients read:

�0 = κd
I0

1 + I0
, ξ0 = 1

I0
− 1

2
(49)

where I0 is a dimensionless intensity of the drive and κd is the
spectral width of mode. To choose a Poissonian laser we need
to put ξ0 = 1/I0. So in saturation I0 � 1, �0 = κd and ξ0 = 0
for Poissonian and ξ0 = −1/2 for sub-Poissonian lasers.

In equation (42) the symbol {· · ·} represents all the higher
degrees of derivatives relative to fluctuations εl and εd. We
need to keep them, in principle, for non-classical fields. At the
same time we will demonstrate later that they do not contribute
to our output signal given by formula (50) in the next section.
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4. Photodetecting the radiation of the three-level
laser

As is known, the photocurrent spectrum i (2)
ω under detection,

a single mode field in the approximation of small photon
fluctuations, is given by the formula [6]:

i (2)
ω / i (2)

shot = 1 +
κl

nl
2 Re

∫ ∞

0
〈εl(0)εl(t)〉eıωt dt. (50)

The first term on the right is equal to one, and represents the so-
called Shotki current in the photodetection or the shot noise, the
second one is traditionally called excess noise; nevertheless it
is possible for it to be negative for quantum fields. One can see
that to look for the photocurrent spectrum we need to calculate
the correlation function 〈εl(0)εl(t)〉. For that it is enough to
have the master equation in the form (42). On the basis of
standard approaches from here, the system of the differential
equations follows:

d

dt
〈εl(0)εl(t)〉 = −2κl〈εl(0)εl(t)〉 + κ̃d〈εl(0)εd(t)〉 (51)

d

dt
〈εl(0)εd(t)〉 = −(�0 + mκ̃d)〈εl(0)εd(t)〉 + mκl〈εl(0)εl(t)〉.

(52)
It is clear that the solutions of these equations depend on the
initial conditions, that is, on the values 〈ε2

l (0)〉, 〈ε2
d(0)〉 and

〈εl(0)εd(0)〉. Because we mean the stationary light flux these
values turn out to be independent of time and can be calculated
for t → ∞.

Then, on the basis of the same equation (42) we can obtain:

d

dt
〈ε2

l 〉 = −4κl〈ε2
l 〉 + 2κ̃d〈εlεd〉 − 2κlnl = 0 (53)

d

dt
〈εlεd〉 = −(�0 + mκ̃d + 2κl)〈εlεd〉 + mκl〈ε2

l 〉
+ κ̃d〈ε2

d〉 + mκlnl = 0 (54)
d

dt
〈ε2

d〉 = −2(�0 + mκ̃d)〈ε2
d〉 + 2mκl〈εlεd〉

− 2(�0 + mκ̃d)ndξd = 0. (55)

Here it needs to be stressed that the systems (53)–(55) and
(51), (52) turn out to be perfectly independent of the terms
of the basic equation (42), represented by the symbol {· · ·},
although they were written without any restrictions relative to
them. They simply do not contribute to these systems in the
exact sense of word.

Relatively simple calculations allow us to write the explicit
expression for a photocurrent spectrum in the general case:

i (2)
ω / i (2)

shot = 1 − 2κ2
l

× ω2 + �0(�0 + mκ̃d) − mκ̃d(�0 + κ̃d)ξ0 + m(m − 1)κ̃2
d /2

[κl(2�0 + mκ̃d) − ω2]2 + ω2(�0 + mκ̃d + 2κl)2
.

(56)

For our level of interest it is enough to discuss two particular
cases. We will speak about the weak connection between the
driving and driven lasers, if the rate of escape of photons out
of the cavity of the drive laser, and the rate of damping the
photon fluctuations there, are independent of the presence of
the driven three-level laser. It is achieved provided

�0 � mκ̃d(� κd). (57)

By contrast the case of the strong connection, when the rates
are determined solely by absorption in the three-level medium,
is realized under the condition

�0 � κ̃d(� mκd). (58)

It is not difficult to see that the photocurrent spectrum for
the weak connection is given by the formula:

i (2)
ω / i (2)

shot = ω4 + ω2(�2
0 + 2κ2

l ) + 2κ2
l �2

0

ω4 + ω2(�2
0 + 4κ2

l ) + 4κ2
l �2

0

. (59)

Apparently, under the high frequencies, the level of noise
is shot because i (2)

ω / i (2)

shot → 1. At the same time, at zero
frequency i (2)

ω / i (2)

shot → 1/2. This means that sub-Poissonian
lasing takes place with reduction of the shot noise by half.
Moreover this fact does not depend on the photon statistics of
the drive laser (there is no dependence on ξ0) and we have the
same effect as there was before [1].

In the case of the strong connection the photocurrent
spectrum reads:

i (2)
ω / i (2)

shot = 1 − κ2
l

2ω2 − mκ̃2
d (1 + 2ξ0 − m)

(ω2 + mκ̃dκl)2 + ω2(m2κ̃2
d + 4κ2

l )
. (60)

As is seen as for the weak connection, the shot noise takes place
for high enough frequencies. At the same time the reduction
at zero frequency is given by the formula:

i (2)

ω=0/ i (2)

shot = 2ξ0 + 1

m
(61)

and now depends on the photon statistics of the drive laser
and on the number m. If at first we choose m = 1 we
can conclude that in the case of strong connection between
lasers the reduction of shot noise at zero frequency is the
same as for the drive laser. In fact we have the perfect
reduction with ξ0 = −1/2 and the zero one for the Poissonian
drive ξ0 = 0. At the same time we can achieve appreciable
reduction even for the Poissonian drive under m � 1.4 This
effect can be understood on the basis of the following simple
consideration. We could discuss our three-level system as a
system which converts the m photons in the channel of driving
into one photon in the laser channel. The simplest calculation
demonstrates that under this operation the Poissonian flux is
converted into the sub-Poissonian one.
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